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Motion of Electrons in Bands

Motion of equation for an electron in a crystal is E i
/
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The effective mass defined as 5
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is useful because it allows us to retain the
notion of a free-electron even when we have a
periodic potential, as long as we use m* to
account for the effect of the lattice on the
acceleration of the electron.
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Scattering of Electrons in Bands

An exactly periodic lattice of positive cores does not cause scattering.
Perturbations of the stationary Bloch states can only occur in two ways:

(I) Within the one-electron approximation, where interactions between
electrons are neglected, the only sources of electron scattering are
deviations from strict periodicity in the lattice. These may be:

a) defects in the lattice that are fixed in time and space such as
vacancies, dislocations, impurities, etc.
b) deviations from periodicity that vary in time, i.e., lattice vibrations.

(II) The one-electron approximation neglects interactions between
electrons. Electron-electron collisions, which are not contained in the
concept of a non-interacting Fermi gas, can in fact perturb the
stationary Bloch states. As we will see, this effect is usually much less
significant than those noted in (I).



The decisive quantity for the description of an electron scattering process is
the probability wyy that the electron will be scattered from a Bloch state
W(r) to a state Yy (r) under the influence of one of the previously described
imperfections.

Wik ~ |(K) 7 R = IJdrw}'if ") 7 ()

where 7 /(r)is the perturbation to the Hamiltonian.

If 7 '(r)is a potential that is constant in time, such as that of a static defect,

then we expect only elastic scattering of the Bloch waves with conservation
of energy.

If 7'(r,t)is a potential that varies in time, as appropriate for the pertur-
bation due to a lattice wave (phonon), then the scattering is inelastic.

Energy conservation also applies to the scattering of conduction electrons

by phonons:
E(K') — E(k) = ho(q) .



For scattering by a phonon with wave vector q, the perturbation 7'
naturally has a spatial dependence exp (iq - r). This means

K1) = [drune #400  ulr) = e () e

Because (u*yuy) has the periodicity of the lattice and can be expanded as
a Fourier series in terms of reciprocal lattice vectors, the matrix element
above is non-zero only when

K -k=q+G.

If we take energy conservation and k-conservation together, then, we see
that scattering of Bloch-state electrons, formally should be represented
with a wavepacket, can be well described in the particle picture.



Electron-Electron Scattering

For a collision between two electrons (1)+(2) = (3)+(4), we must have

Ei+E,=E;+E,,
where E; = E(k;) denotes the one-particle energy of an electron in a non-
interacting Fermi gas. Furthermore for the corresponding k-vectors:
ki+k,=k; + ks +G.
Let us assume that one electron occupies the state E; > Ef, an excited state just
above the Fermi level; the second electron involved in the collision is inside the

Fermi sphere with E, < Ef. For scattering to states E3 and E,4, the Pauli principle
demands that E5 and E4 must be unoccupied. Thus,

Ey,>FEr, Eh < Ep, E3 > Ep, E4 > Ef .
From energy conservation, it then follows that
E\+E,=E+E;>2E and (E\—Er)+(E2—EF)>0.
If (E1—Egp) <é1,then |[Ex-Eg| = l&] < ¢

The thermal broadening of the Fermi function is of the order kgT, so that the
final state E; must lie within this energy of Ey, i.e. £ ~ kgT.



s Since only the fraction ~g/Er of all
(ki ~ks) electrons may scatter with the electron in
the state E;. If E; and E, are in the shell &,

k, -k

IZ) / ok around Ef, then because of k conservation,

) /{( E; and E, must also lie in the shell f&
[ / ’ (1) around Ep. The k conservation in the form
/«”"’E (4) k, - k; = k, - k, means that the connecting

k« lines (1)-(3) and (2)-(4) in the figure must
be equal. Because only a fraction ~¢&;/E of
all occupied states are allowed final states,

Elk)=Ef the Pauli principle further reduces the
scattering probability by a factor &, /EF.

Let us assume that the cross-section for the scattering of an electron from a
defect in the lattice is of the order X, then the cross-section for the e-e

scattering 2 is (kB T
2 X

2
E_> 20, and typically, kg/Er ~10-° K1,
F

The probability of electron-electron scattering at a temperature of 1 K is about a
factor ~10-10 smaller than that of electron-defect scattering.



Boltzmann Equation and Relaxation Time

Transport phenomena, such as the flow of electric current in solids, involve
two characteristic mechanisms with opposite effects: the driving force of the
external fields and the dissipative effect of the scattering of the carriers by
phonons and defects. The interplay between the two mechanisms is de-
scribed by the Boltzmann equation. In thermal equilibrium,

FolE(k)] = 1 This equilibrium distribution f; is
0 o Ry ' independent of r because of the
[E()~Ee)/4T | 4
c + assumed homogeneity.

Away from equilibrium, where we merely assume local equilibrium over
regions large compared with atomic dimensions, the required distribution
f(r,kt) can be both space and time dependent. Under an applied external
field &£, an electron that is at r and k at time ¢t, will have had the coordinates

r—v(k)dt and k— (—e)&dt/h at time t-dt. In the absence of collisions,
each electron with coordinates r - vdt and k + e£dt/h at t-dt must arrive at
r, k at time t,

flrk,t) = fr —vdt,k + e&dt/h,t — dt) .



If we express the change in f due to scattering by the term (9//9%)s, then the
correct equation is

ﬂﬁkﬁ%;ﬂw—mﬁk+e3ﬂﬁht—dﬂ+(%9cﬁ.

Expanding this up to terms linear in dt gives the Boltzmann equation,

of e Nz

Probability for transitions from the Bloch state )y to ¥y -is wyoc|[(k'| 7 /| k)|

(T57) = i | A8 = 1 R 1))
ot ) (2n)
We employ the relaxation time ansatz, assuming that the rate at which f

returns to the equilibrium distribution f; due to scattering is proportional to
the deviation of f from f;, then

(S_tf) _ f(k)TZkJ;o(k)

S



If f does not depend on position (i.e., V,f=0), then under the influence of an
electric field &, it follows that the stationary state (df/dt=0) is given by

2 & Nif = ~[[k) — o)) /2(k)
fk) = fo(k) + 5 2(k) & Vi f(K) .
To the first order in &,

fUle) 2= folk) + <) & -V fo(le) = fo (I + 5 (k)& )

f

Af—fo
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(500 The stationary state of the distribution is
[f og represented as a displaced Fermi sphere in
{o o a (full line). If the external field is switched
\% off, the displaced sphere relaxes back to the
\0\35 > equilibrium distribution (dashed line).
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Electrical Conductivity of Metals

Drude Model: an ideal electron gas in the solid,

. om o
muv—+—uvp = —ec .
T
The scattering is accounted for by the friction term mvp/t where vp = v = Viperm
is the so-called drift velocity, i.e., the additional velocity due to the field, over
and above the thermal velocity. For the stationary case (U = 0) one has

et 62 tn
— ce . . o e
UD = —— ¢ and hence the current denslty J = —énvp = ne o = N

The electrical conductivity o and mobility u are therefore

L ént et
= and u=—.
m m

Note that, in this simple model, all free electrons contribute to the current. This
view is in contradiction to the Pauli principle.



Semiclassical Approach: dynamics of band electrons are considered.

The contribution to the current of electrons in the volume element dk is
Jj= 3 Jdk v(k)f(k) , f(k) is the occupation probability function.
i

For an electric field <, in the x-direction, the electrical current density is

j:_%Jdkv(k)lo(k) ;<-l s gf]

Since the integral is over the whole Brillouin zone and fy(k) has inversion
symmetry about k = 0, the integral over v, f; vanishes. Furthermore, since

ofo I e dfo
Do T, and jy= st Jdkv (kye(k) %

The specific electrical conductivity is therefore

8;Jdkv (o)) 2



The energy region over which the Fermi function f,(E) changes rapidly has a
width of about 4 KT. It also has inversion symmetry about the point (E, fo (EF)
= 1/2). Thus, to a good approximation,

o~ —O(E— Er). dk = dfedk | = dfs. wE dfe 7 ok
e’ v> (k) e [ vA(k)
o= 8n3thfEdE ’U(k) T(k)é(E— EF) =~ 87'[3h U ’U(k) ’L'(k)de
E=Efp

The electrical conductivity o of a metal can thus be expressed as a surface
integral over the Fermi surface E(k)=Ey in k-space. Only the velocity v(Ef) and
the relaxation time t(Ef) of the electrons at the Fermi surface appear in the
microscopic description. The above equation expresses precisely the fact that
only electrons in the vicinity of the Fermi energy are relevant for current
transport in a metal, as expected from the Pauli exclusion principle.

For electrons in an exactly parabolic band (quasi-free electrons) we have

’U(EF) = hkp/m* and J de = 2(47‘(](%) .

Eg
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_2(4/3)m kg
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Thus, the electrical conductivity o and mobility u are given by

If #T<Ep, wehave p ,ie., ki =3nn.

2
e“1(ER)

et(ER) |

m>|<

To understand the temperature dependence of the resistance of metals, it
suffices to consider the temperature dependence of t(Er) or u, because the
electron concentration n is independent of temperature. Assuming that the
phonon and defect scatterings are independent of one another, the total
scattering probability is the sum of the individual scattering probabilities.
The scattering probability is inversely proportional to the relaxation time. It
therefore follows that i | i

i 4
T  Tph  Tdef

Tgef 1S Usually temperature independent and 7, is proportional to the mean
square vibrational amplitude <u?(q)>, so
1 X £ T




We can write the resistivity p = 1/0 « 1/t of a metal as the sum of a
temperature-independent residual resistivity pg4.r (due to defects) and a part
due to phonon scattering p,,(7T) which is linear in temperature at high
temperature:

0 = Qpn(T) + Qger -

Left figure shows the experimentally
measured electrical resistance of Na at
low temperature. Below about 8 K, a
temperature-independent pg.r residual
resistance is observed, which depends
on the defect concentration of the
sample. At higher temperatures, the
component described by the GruE
neisen formula becomes evident, and
ob—1 v above 18 K p,;, displays the linear de-
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Quantum Transport in Nanostructures

Small number of states can affect the overall

current

Wavefunction coherence lengths are comparable
to characteristic device dimensions

Single electrons charging effects can be significant

These can amount to overall macroscopic
electronic properties that show deviations from
bulk electronic properties.



Transistor count

Moore’s Law

The number of transistors per microchip doubles roughly
every two years.
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Important Length Scales

The observability of quantum effects depends on the dimensions of the
conductor as well as on the number of elastic or inelastic scattering processes
that occur in a given volume. In this context, one considers various
characteristic length scales that can be attributed to a propagating electron.
Elastic mean free path (I.): average distance the electrons travel without being
elastically scattered
l. = viT.. vpdenotes the Fermi velocity of the electrons
Inelastic mean free path (I;,): average distance the electrons travel before their
energy is changed, mainly due to interaction with phonons
i, = VeTi. Tip denotes the mean time between inelastic scattering events
Phase coherent length (I3): average distance the electrons travel before their
phase is randomized
lo = VETo. To denotes the dephasing time of the electrons
Fermi wavelength (Ar): de Broglie wavelength of Fermi electrons
ind=3: Ap= 232(n/3n)3  For metals, A; is below 1nm and for quasi-
ind=2: Ag= (2m/n)l/2 metallic 2D electron gases (2DEG), A lies
ind=1: A= 4/n typically between 50 and 100nm.



Important Mesoscopic Regimes

conventional device:

— e N~ mesoscopic
NI device:
< >
L

L>>lg diffusive L, ballistic

L>>I¢ incoherent L< l¢ phase coherent

L>>A  no size quantization L< Ap size quantization
e2/C <kg® no single e2/C kg® single electron

electron charging charging effects

8 no spin effects L< g spin effects




Electronic Structure of 1-D Systems

Consider a quasi one-dimensional wire with a diameter of the order of the
Fermi-wavelength Ar and a length L, << [, l;. Electron transport through the
wire is called ballistic in that case since an electron passes from one end to the
other without being scattered at all.
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For free electrons the energy in the subbands is
272

E; = iy, ky) + % v(x,y.z)=w, (x,y)e

ikz .. .
I, ] = quantum numbers in

the cross section

Thus, the energy bands represent a sequence of parabolas, each of which
describes one transport channel shown in the above figure.



Electrical Transport in 1-D

The difference between the chemical potentials

left 1" Conducior: ;] rght is given by the voltage U between the contacts,
contact Juir I contact

pL — pr = eU.

Only the electron states between u;, and ug
contribute to the current flow from left to

al % " —_— right. The current in one subband i is then
A, _y-_--/uﬂ 03
e
KR
Since D(l)(E) _ 1 d (E) = laEi _— [ = 2_62 U
n 0Ejok. ~and Ui = oh

2e? s
The universal conductance is Go = - = 7.74809 x 107> Q7' = 1/(129064 Q).

If more than one channel fits into the conductor then each channel contributes
2e%/h to the total conductance. The conductance quantum reduces to half the

value e2/h if the spin-degeneracy is lifted by a strong magnetic field.



Conductance of Quantum Point Contact (QPC)
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FIGURE 5.22. (a) Layout of a typical quantum point contact, a short constriction defined by
patterned metal gates on the surface of a heterostructure containing a 2DEG. (b) Calculated con-
ductance G (V) as a function of gate voltage V. [From Nixon, Davies, and Baranger (1991).]




Electron Flow Close to a QPC
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Figure 2 Experimental images of electron flow. a, Image of electron fiow from one side of by /2, half the Fermi wavelength, are seen to persist across the entire scan. b, Images
aQPCat T=1.7K, biased on the G = 2e’/h conductance Step. Dark regions correspond  of electron fiow from both sides of a different QPC, again biased on the & = 2e%/h

10 areas where the tip had little effect on QPC conductance, and hence are areas of low  conductance step. The gated region in the centre was not scanned. Strong channelling
electron flow. The colour varies and the height in the scan increases with increasing and branching are again clearly visible. The white amow points cut one example of the

@n flowv. Narcow branching channels of electron flow are visible, and fringes spaced  formation of a cusp downstream from a dip in the potential. j




QPC Formed in STM
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Molecular Break Junctions

Figure 1. Schematic representation of a break junction with a
thiolated Cgy molecule anchored to the left electrode. The distance d
between the molecule and the right electrode can be adjusted by
opening and closing the junction.

1mM

/| solution

f

f/\

L\_—°
a b c d

Fig. 1. A schematic of the MCB junction with (a)
the bending beam, (b) the counter supports, (c) the
notched gold wire, (d) the glue contacts, (e) the
pizeo element, and (f) the glass tube containing
the solution.




Quantum Interference

tamas thmp: amplitude for transmission
along paths a, 8

g = thnm|2

= Z Z |tnm,a|2 + Z Z tnm,a(tnm,ﬁ)*

mmn o m,n oS

= Qclass T 69

In general: §g small, random sign



Weak Localization

Weak localization is a physical effect which occurs in disordered electronic
systems at very low temperatures.

Electric resistance

Diffusive transport from P to Q in which s~
elastic scattering processes occur.

elastic
scatterlng

PN

.\ ./ Weak antilocalization
o I e

Weak localization

Magnetic field B

(a) Generation mechanism (b) Magneto-resistance effect

The trajectory 3a describes a closed loop that can be circulated about
clockwise and counter clockwise. Constructive interference may occur which
leads again to an enlarged backscattering that entails an enhancement of the

resistance, i.e., A2= (A +A)2=A2+A2+2AA, =4 A2

Interference effects double the classical contribution and (slightly) suppress
the conductance. This is called weak localization.



Weak Anti-Localization
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(a) Generation mechanism (b) Magneto-resistance effect

In a system with the carrier’s spin coupled to its momentum, the spin of the
carrier rotates as it goes around a self-intersecting path, and the direction of
this rotation is opposite for the two directions about the loop. Because of
this, the two paths of any loop interfere destructively, which leads to a lower
net resistivity. This is called weak antilocalization.



Universal Conductance Fluctuations
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Magnetic field B (T)

The individual fluctuations in each compartment add up to the total
fluctuations AR of the entire conductor as stochastic noise does. Hence, AR is
proportional to the square root of the number of consecutive compartments,

ARO(\/NO(\/IE.
@



Change in conductance AGryg (€2/h)

The total resistance R on the other hand is proportional to the number of
consecutive compartments N. The length dependence of the fluctuations in
the conductance is therefore
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AAS-oscillations
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The length-dependence of the
conductance fluctuations has been
experimentally confirmed for a sample
that consisted of a series of N silver
rings with N=1, 3, 10, and 30. The rings
are connected by stripes of 75 nm
width and 20 nm thickness. The
conductance oscillations due to the
Altshuler-Aronov-Spivak-oscillations of
the frequency h/2e are independent of
the number of the rings. The universal
conductance fluctuations decrease
with the number of rings N.



Aharonov-Bohm (A-B) Effect

An electron that enters the ring structure from the left has the option of two
paths denoted as (1) and (2) in the figure. Interferences occur if the
transport is phase conserving and if the phases of the two paths are shifted
with respect to each other. The interference is measured as periodic
oscillations of the current as function of the phase difference between the
paths. The effect is named Aharonov-Bohm effecct.

Aharonov-Bohm AB Oscillation
(AB) Ring 9 ! Phase of Electrons
1
AN _EHNANANT
O | \ .
B - | / \
YW ® ) W\ E &
Electron v O
as a Wave s
(2) Magnetic Field
2
B
AR



The transport must be phase conserving. Hence the distance between the
two contacts L must be smaller than the inelastic mean free path [, and the
phase coherence length I, (diffusive transport)

lo < L < by, ls.

The phase difference between the two electron paths (1) and (2) of the ring is
shifted by a magnetic flux. We consider the case of ballistic transport (L < I,)
where electrons propagate as plane waves of the form exp(ikr)=exp(ipr/h).
In a magnetic field the momentum p in the Hamilton-operator is to be
replaced by the kinetic momentum p-eA with A the vector potential of the
magnetic field. Hence the wave function of the electron in a magnetic field is
that of a plane wave with modified momentum p:

. € .
V(r) o exp (1%A : r) exp(ilk-r—wt))
The magnetic field causes a phase shift via 4, i.e.

dgoz%A-ds.



The total phase shift is the integral of d¢ along the path:

VY(r) = 'mep(lhe/A-ds) +'P2exp(lh€/A-ds)

1 2

Here ¥, and ¥, are the wave functions for vanishing magnetic field.

With respect to the magnetic field B, and thus with respect to the vector po-
tential A the two paths are circulated in opposite direction and one obtains

for the total phase shift:
/A-ds—/A-ds: ?{A-ds://df-curlA ://df.B:@B,
1 2 Ring

where @5 is the magnetic flux through the ring. Then,

Y (r) = exp (;/A : ds) (‘Pl exp (1%6 @B) + Y’z) x e + el
2

Hence the current I as function of the magnetic flux @y is

ie

2
er?® el = 2[1 + cos(2ndg /Py — )] , and Py = h/e.

I x



A-B Ring Applications
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Altshuler-Aronov-Spivak (AAS) Oscillation

Aharonov-Bohm-oscillations as measured on a nanoscale gold ring:
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0,1 0,2 0,3 0 100 200 300
Magnetic field B (T) 1/AB (T)

Oscillations at twice the fundamental (~260 T-1)originate in the interference of
electrons at the entrance of the ring after travelling a full circle. Constructive
interference at the entrance leads to a larger backscattering into the entrance
channel and therefore to a reduction in the current. Such Altshuler-Aronov-
Spivak-oscillations occur when the phase coherence length Iy is large enough.
They are more robust than Aharonov-Bohm-oscillations since both partial
waves travel the same path and thus encounter the same defect pattern.



Problems

1. Calculate the electric field dependence of the conductivity o(F) using the
second iteration for the solution of the Boltzmann equation. In the second
iteration step, as in the first, use a field-independent distribution f;. Discuss
interesting applications of a material with a highly field-dependent
conductivity.

2. a) Calculate the density of states D()(E) for the electronic subband of a one-
dimensional conductor. Sketch the density of states as function of the
electron energy E for a sequence of subbands as they exist in a conducting
wire.

b) Which scattering processes are possible in electron transport if only a
single subband is occupied? What is different if a second subband is
occupied so that the Fermi-level intersects two subbands?

3. Altshuler-Aronov-Spivak (AAS) oscillations occur because of the constructive
interference at the entrance leads. Show that the oscillation period is now
®,/2, half the period than for the Aharonov-Bohm (AB) effect.



